Mitigated phase transition during first cycle of a Li-rich layered cathode studied by in operando synchrotron X-ray powder diffraction.

نویسندگان

  • Bohang Song
  • Sarah J Day
  • Tan Sui
  • Li Lu
  • Chiu C Tang
  • Alexander M Korsunsky
چکیده

In operando synchrotron X-ray powder diffraction (SXPD) studies were conducted to investigate the phase transition of Li-rich Li(Li0.2Ni0.13Mn0.54Co0.13)O2 and Cr-doped Li(Li0.2Ni0.13Mn0.54Co0.03Cr0.10)O2 cathodes during the first charge/discharge cycle. Crystallographic (lattice parameters) and mechanical (domain size and microstrain) information was collected from SXPD full pattern refinement. It was found that Cr substitution at Co-site benefits in suppressing the activation of Li2MnO3 domains upon 1st charge, and thus mitigates the phase transition. As a consequence, Cr-doped layered cathode holds a better reversibility in terms of a full recovery of both lattice parameters and nano-domain size after a whole charge/discharge cycle. The effects of different cycling rates on the structural change were also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.

Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high-performance energy storage systems because they have a high theoretical specific energy, low cost, and are eco-friendly. However, the structural and morphological changes during electrochemical reactions are still not well understood. In this Article, these changes in Li-S batteries are studied in operando by X-ray diffr...

متن کامل

Exploration of Non-Aqueous Metal-O2 Batteries via In Operando X-ray Diffraction

Liu, C. 2017. Exploration of Non-Aqueous Metal-O2 Batteries via In Operando Xray Diffraction. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1572. 71 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0094-8. Non-aqueous metal-air (Li-O2 and Na-O2) batteries have been emerging as one of the most promising high-energy storage systems...

متن کامل

Understanding Inhomogeneous Reactions in Li‐Ion Batteries: Operando Synchrotron X‐Ray Diffraction on Two‐Layer Electrodes

To understand inhomogeneous reactions perpendicular to the current collector in an electrode for batteries, a method combining operando synchrotron X-ray diffraction and two-layer electrodes with different porosities is developed. The two layers are built using two different active materials (LiNi0.80Co0.15Al0.05O2 and LiMn2O4), therefore, tracing each diffraction pattern reveals which active m...

متن کامل

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study†

High voltage cathode materials Li-excess layered oxide compounds Li[NixLi1/3 2x/3Mn2/3 x/3]O2 (0 < x < 1/2) are investigated in a joint study combining both computational and experimental methods. The bulk and surface structures of pristine and cycled samples of Li[Ni1/5Li1/5Mn3/5]O2 are characterized by synchrotron X-Ray diffraction together with aberration corrected Scanning Transmission Elec...

متن کامل

Structure of the high voltage phase of layered P2-Na2/3z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability

A combination of operando X-ray diffraction, pair distribution function (PDF) analysis coupled with electrochemical measurements and Mössbauer spectroscopy elucidates the nature of the phase transitions induced by insertion and extraction of sodium ions in P2-Na0.67[NiyMn0.5+yFe0.5 2y]O2 ( y = 0, 0.10, 0.15). When phase transitions are avoided, the optimal cathode material – P2-Na0.67Fe0.2Mn0.6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2016